Multiwavelet Frames from Refinable Function Vectors

نویسندگان

  • Bin Han
  • Qun Mo
چکیده

Starting from any two compactly supported d-refinable function vectors in ( L2(R) )r with multiplicity r and dilation factor d, we show that it is always possible to construct 2rd wavelet functions with compact support such that they generate a pair of dual d-wavelet frames in L2(R) and they achieve the best possible orders of vanishing moments. When all the components of the two real-valued d-refinable function vectors are either symmetric or antisymmetric with their symmetry centers differing by half integers, such 2rd wavelet functions, which generate a pair of dual d-wavelet frames, can be real-valued and be either symmetric or antisymmetric with the same symmetry center. Wavelet frames from any d-refinable function vector are also considered. This paper generalizes the work in [5, 12, 13] on constructing dual wavelet frames from scalar refinable functions to the multiwavelet case. Examples are provided to illustrate the construction in this paper.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extension Principles for Dual Multiwavelet Frames of L2(r) Constructed from Multirefinable Generators

In this work we prove that any pair of homogeneous dual multiwavelet frames of L2(R) constructed from a pair of refinable function vectors gives rise to a pair of nonhomogeneous dual multiwavelet frames and vice versa. We also prove that the Mixed Oblique Extension Principle characterizes dual multiwavelet frames. Our results extend recent characterizations of affine dual frames derived from sc...

متن کامل

Dual Multiwavelet Frames with High Balancing Order and Compact Fast Frame Transform

An interesting method called Oblique Extension Principle (OEP) has been proposed in the literature for constructing compactly supported MRA tight and dual wavelet frames with high vanishing moments and high frame approximation orders. Many compactly supported MRA wavelet frames have been recently constructed from scalar refinable functions via OEP. Despite the great flexibility and popularity o...

متن کامل

Dual Multiwavelet Frames with Symmetry from Two-direction Refinable Functions

Motivated by [B. Han and Q. Mo, Adv. Comp. Math. 18 (2003) 211-245] and [B. Han and Z. Shen, Constr. Approx. 29 (2009) 369-406], we propose dual two-direction frames in dual Sobolev spaces (H(R), H−s(R)), with s > 0. Based on the dual two-direction frames from a pair of two-direction refinable functions, dual multiwavelet frames with symmetry {Ψ(x) := (ψ 1(x), ψ 2(x)) T }`=1 and {Ψ̃(x) : = (ψ̃ 1(...

متن کامل

Riesz Multiwavelet Bases

Compactly supported Riesz wavelets are of interest in several applications such as image processing, computer graphics and numerical algorithms. In this paper, we shall investigate compactly supported MRA Riesz multiwavelet bases in L2(R). An algorithm is presented to derive Riesz multiwavelet bases from refinable function vectors. To illustrate our algorithm and results in this paper, we prese...

متن کامل

Orthogonality Criteria for Compactly Supported Refinable Functions and Refinable Function Vectors

A refinable function φ(x) : Rn → R or, more generally, a refinable function vector 8(x) = [φ1(x), . . . , φr (x)]T is an L1 solution of a system of (vector-valued) refinement equations involving expansion by a dilation matrix A, which is an expanding integer matrix. A refinable function vector is called orthogonal if {φj (x − α) : α ∈ Zn, 1 ≤ j ≤ r} form an orthogonal set of functions in L2(Rn)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Adv. Comput. Math.

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2003